Kalademi.me'da sorularınıza cevaplar bulun, tüm ihtiyaçlarınız için en güvenilir ve etkili Q&A platformu. Sorularınıza hızlı ve güvenilir çözümler bulmak için deneyimli uzman topluluğumuzdan faydalanın. Farklı alanlardaki profesyonellerden kapsamlı çözümler bulmak için platformumuzu kullanın.
Sagot :
SORU: A- ( B U C ) = (A-B ) ∩ ( A-C ) eşitliğinin doğruluğunu gösterelim.
ÇÖZÜM: A-(B U C) = A∩ (B U C) '
= A ∩( B ∩ C' ) (A-B = A ∩ B' olduğundan)
= (A ∩ A) ∩ (B' ∩ C') ( De morgan kuralı )
= (A ∩ B') ∩ (A ∩ C') ( Tek kuvvet özeliği )
= (A-B) ∩ (A-C) bulunur. (kesişim işlemi birleşme özeliği)
SORU: ( A-B )' kümesinin A' U B kümesine eşit olduğunu bulalım.
ÇÖZÜM: ( A - B )' = ( A ∩ B' )'
= A' U ( B' )' ( ( A - B ) = A ∩ B' idi )
= A' U B Olur. ( De morgan kuralı )
= ( A - B )' = A' U B Olur.
SORU: A ve B iki kümedir. s( A ) = 2 . s( B ) , s( A - B ) = 10 ve A ∩ B kümesinin Alt kümelerinin sayısı 64 olduğuna göre,B kümesinin eleman sayısını bulalım .
ÇÖZÜM : A ∩ B kümesinin alt kümelerinin sayısı 64 olduğuna göre,
2n = 64 = 26 Þ n = 6 bulunur. = 10 + 6 = 16 olur.
s( A ∩ B ) = 6 olur. s( A ) = 2 . s ( B )
s( A ) = s( A – B ) + s ( A ∩ B ) 16 = 2 . s( B ) Þ s( B ) = 8 bulunur.
SORU: s( A ) = 10 , s( B ) = 9 , s ( A U B ) = 15 ise s ( A - B )’yi bulalım
ÇÖZÜM : s( A ∩ B ) = x olsun A B
s( A U B ) = s( A ) + s( B ) -s( A ∩ B )
15 = 10 + 9 – x
x = 4 olur.
s( A – B ) = s( A ) – s( A ∩ B )
= 10 – 4 = 6 olur.
SORU: Bir turist gurubu Almanca ve İngilizce dillerinden en az birini bilenlerden oluşmuştur. Grubun % 60’ı almanca, % 80’ni ingilizce biliyor.Grupta her iki dili konuşan 8 kişi vardır. Bu turist grubunda kaç kişi vardır?
ÇÖZÜM: Grubu 100 kişi kabul edelim
s( A U İ ) = s( A ) + s( İ ) - s( A ∩ İ ) 40 8 kişi karşılık gelirse
100 = 60 + 80 - s( A ∩ İ ) 100 X kişi karşılık gelir.
Þ s( A ∩ İ ) = 40 x = 100 ٠ 8 = 20
40
SORU: İngizce veya Almanca dillerinden en az birinin bilindiği 34 kişilik bir turist grubunda sadece İngilizce bilenlerin sayısı, her iki dili bilenlerin 4 katından 1 fazladır. Bu grupta İngilizce bilen en fazla kaç kişi vardır?
ÇÖZÜM: A X + Y + Z = 34
X = 4Y + 1
X + Y + Z = 4Y + 1 + Y + Z = 5Y + Z + 1 = 34
5Y=33-Z Z en küçük olduğunda ingilizce
bilenler en fazla olur.O halde Z=3 olmalıdır.
Z = 3 Þ 5Y = 33 - 2 = 33 - 3 = 30 Þ Y = 0
En fazla İngilizce bilenlerin sayısı : X + Y = 4Y + 1 + Y = 5Y + 1 = 5٠6 + 1 = 31’dir.
SORU : 40 kişik bir grupta, 8 kişi futbol ve basketbol oynamaktadır.30 kişi bu oyunlardan en az birini oynamaktadır. Futbol oynayanların sayısı basketbol oynayanların sayısından 6 fazladır. Bu grupta futbol oynamayan kaç kişi vardır.
ÇÖZÜM :
Grup x + y + z + t = 40 kişi
Futbol ve Basketbol oynayan y = 8 kişi
Futbol ve Baketboldan en az birini oynayanlar x + y + z = 30kişi
Futbol oynayanlar (x + y ) basketbol oynayanlardan
( y + 2 ) den 6 fazladır.
X + Y = Y + Z + 6 Þ X - Z = 6 X + Y + Z + t = 40 Þ t = 10
X + Y + Z = X + 8 + Z = 30 Þ X + Z = 22 futbol oynamayan
X – Z = 6 Þ Z = 8 Z + t = 8 + 10 =18 kişidir.
X + Z = 22
SORU : P( X , Y ) : 2x - 3Y < 5 açık önermesinin P( - 2 , 1 ) için doğruluk değerlerini bulalım.
ÇÖZÜM: 2x - 3Y < 5 açık önermesinde , x = - 2 ve Y = 1 yazalım.
2 ( - 2 ) – 3 . 1 < 5 Þ - 4 – 3 < 5 Þ - 7 < 5 doğru olduğundan
P( X , Y ) açık önermesinin doğruluk değerleri 1 dir.
SORU : ( A I B' ) U ( A I B ) ifadesini en sade biçimde yazalım.
ÇÖZÜM: ( A I B' ) U ( A I B ) = A I ( B' U B )
= A I E
= A' olur.
SORU: A - ( B I C ) = ( A – B ) U ( A – C ) olduğunu gösterelim.
ÇÖZÜM: A - ( B I C ) = A I ( B I C )'
= A I ( B' U C' )
= ( A I B' ) U ( A I C' )
=(A – B) U (A – C) olur.
SORU: ( A U B ) - ( A – B ) kümesini en sade biçimde yazalım.
ÇÖZÜM: ( A U B ) - ( A - B ) = ( A U B ) I ( A I B' )' ( C - D ) = (C I D' )
= ( A U B ) I ( A' U B ) ( De morgan )
= ( A I A' ) U B ( A I A' = Æ )
= B ( B U Æ = B )
SORU: ( A I B' ) U ( A U B' ) = B - A olduğunu gösterelim.
ÇÖZÜM: ( A I B' ) C ( A U B' ) = A U B' olur.
Buna göre, C' = ( A U B )' = A I ( B')'
= A I B' = B I A' = B - A olur.
SORU: ( A I B ) U ( A / B ) kümesini en kısa biçimde yazalım.
ÇÖZÜM: ( A I B ) U ( A I B' ) = ( A I B ) U ( A I B' )
= ( A I ( B U B' ) = A bulunur.
SORU:Bir turist grubunda Almanca, İngilizce, ve Fransızca dillerinden en az biri bilinmektedir. Almanca bilen 18, İngilizce bilen 20 , Fransızca bilen 15, Almanca ve Fransızca bilen 6,Almanca ve İngilizce bilen 3, Almanca , Fransızca,İngilizce dillerinin
Her üçünüde bilen 2 kişidir. Turist grubu 41 kişi ise İngilizce ve Fransızca bilen kaç kişidir.
ÇÖZÜM: s( A U İ U F) = 41 , s( A ) = 18 , s( İ ) = 20 , s( F ) = 15
A= { Almanca bilenler } s( A I F ) = 6 , s( A I 1 ) = 3 , s( A I F I 1 ) = 2 ise
F = { Fransızca bilenler } s( 1 I F ) = ?
İ = { İngilizce bilenler } olmak üzere
s( A U I U F ) = s( A ) + s( I ) + s( F ) – s( A I 1 ) – s ( A I F ) – s(1 I F ) + s( A I 1 I F )
41 = 18 + 20 +15 + - 3 – 6 - s( I I F ) + 2
s( 1 I F ) = 5 ’ tir
SORU : E = { a , b , c , d , e , f } evrensel küme A = { a , c , e } ise A' kümesini bulunuz.
ÇÖZÜM : A' = { b , d , f }
SORU : E ={ X : - 2 < X < 5 , X ∈ R } evrensel küme;
A = { X : │ X – 1 │ < 3 , X ∈ R } ise A kümesinin tümleyeni kümesini bulunuz.
ÇÖZÜM : │X-1│< 3 Þ - 3 < X – 1 < 3
- 2 < X < 4
-2 5 E
A’ = [ 4 , 5 ] U { - 2 }
-2 4 A
SORU : A = { a , b , c , d , e } B = { a , c , k , p } kümeleri için A B ve B A kümelerini bulunuz
ÇÖZÜM : A B ={ b , d , e }
B A = { k , p }
SORU : A B kümesinin 8 tane alt kümesi , B A kümesinin15 tane öz alt kümesi vardır. s( A U B ) = 12 ise A I B kümesinin 2 elemanlı kaç tane alt kümesi vardır?
ÇÖZÜM : A B
X Y Z s( A B ) = x , s( A I B ) =Y , s( B A) = Z olsun.
A B kümesinin 8 tane alt kümesi olduğundan
2x = 8 = 23 Þ x = 3
B A kümesinin 15 tane öz alt kümesi olduğundan;
22 – 1 = 15 Þ 22 =16 = 24 Þ Z = 4
s( A U B ) = X + Y + Z = 12
3 + Y + 4 =12 Þ Y = 5
A I B kümesinin 2 elemanlı alt kümelerinin sayısı,
( 25 ) = 5.4 = 10 ‘dur
2
SORU : A B' kümesinin 7 tane özalt kümesi, A' I B kümesinin en çok bir elemanlı 6 alt kümesi ve s( A U B ) = 14 ise A I B' kümesi kaç elemanlıdır?
ÇÖZÜM : s( A B' ) = s( A I B ) = Y , 2y – 1 = 7 Þ y = 3
A B s( A' I B ) = s( A B ) = Z ,
X Y Z Z + 2 = 6 Þ 2 = 5
0 1
s( A U B ) = x + 3 + 5 = 14 Þ x = 6
s( A I B’ ) = s( A B ) = 6 ‘dır
SORU : E evrensel kümesinde A ve B kümeleri alınıyor.
s( A ) + s( B' ) = 19
s( A' ) + s( B ) = 21 ise s( E ) kaçtır.
ÇÖZÜM : s( A ) + s( B' ) =19 2 s( E ) = 40 Þ s( E ) = 20 dir.
+ s( A' ) + s( B ) = 21
s( A ) + s( A' ) + s( B' ) + s( B ) = 40
=s( E ) + s( E ) = 40
Buraya uğradığınız için teşekkür ederiz. Tüm sorularınıza en iyi yanıtları vermeyi taahhüt ediyoruz. Yakında görüşmek üzere. Ziyaretiniz için teşekkür ederiz. İhtiyacınız olan bilgileri her zaman bulabilmeniz için buradayız. Kalademi.me'ye ziyaretiniz için teşekkür ederiz. En güncel yanıtlar ve bilgiler için geri dönün.