Witaj na Kalademi.me, gdzie możesz uzyskać wiarygodne i szybkie odpowiedzi dzięki naszym ekspertom. Sorularınıza hızlı ve net çözümler bulmak için uzman topluluğumuzla bağlantı kurun. Sorularınıza hızlı ve güvenilir çözümler bulmak için deneyimli uzman topluluğumuzdan faydalanın.
Sagot :
2.2.1. Tanım
Nesnelerin oluşturduğu herhangi bir topluluğa bir küme denir.
Bu tanım üzerinde biraz duralım. Açıkça görüldüğü gibi tanım tümüyle sezgiye dayalı bir tanımdır. Çünkü tanımda geçen nesne sözcüğü aslında yeterince açıklık ifade eden bir sözcük değildir. Ama sezgisel olarak, kümeyi oluşturan nesnelerin iyi
tanımlı olduklarını; yani belirgin, başka nesnelerden ayırdedilebilir şeyler olduklarını düşünüyoruz demektir. Bir bakıma, bir kümeyi oluşturan nesnelerin tek tek neler olduklarını düşünmekten çok, birarada düşünebilir olmalarını önemsiyoruz.
Şimdi bir kaç örnek verelim:
2.2.2. Örnek
Aşağıdaki topluluklardan her biri birer kümedir:
(i) Yeryüzünde yaşayan tüm canlılar topluluğu
(ii) Bir kitaplıktaki tüm kitaplar topluluğu
(iii) Evrendeki tüm yıldızlar yığını
(iv) Üç rakamlı pozitif tam sayılar topluluğu
(v) Bir çiftlikteki tüylü canlılar topluluğu
(vi) a, b, c, d, 3, 5, 7 den oluşan harfler ve sayılar topluluğu
Bu örneklerden anlaşılabileceği gibi bir kümeyi oluşturan nesneler insanlar, kuşlar,
kitaplar, ... gibi somut ya da harfler, sayılar, ... gibi soyut nesneler olabilirler. Ayrıca
(vi) örnekte olduğu gibi bir kümeyi oluşturan nesneler arasında belirgin ortak bir
özellik var olmayabilir (diğer örneklerde kümeyi oluşturan nesneler arasında ortak
özelliklerin varlığına dikkat ediniz).
Kümenin elemanları aşağıdaki 3 yolla gösterilebilir.
1. Liste Yöntemi
Kümenin elemanları { } sembolü içine, her bir elemanın arasına virgül konularak yazılır.
A = {a, b, c} ise, s(A) = 3 tür.
2. Ortak Özelik Yöntemi
Kümenin elemanlarını; daha somut ya da daha kolay algılanır biçimde, gerektiğinde sözel, gerektiğinde matematiksel bir ifade olarak ortaya koyma biçimidir.
A = {x : (x in özeliği)}
Burada “x :” ifadesi “öyle x lerden oluşur ki” diye okunur.
Bu ifade “x |” biçiminde de yazılabilir.
3. Venn Şeması Yöntemi
Küme, kapalı bir eğri içinde her eleman bir nokta ile gösterilip noktanın yanına elemanın adı yazılarak gösterilir.
Bu gösterime Venn Şeması ile gösterim denir.
C. EŞİT KÜME, DENK KÜME
Aynı elemanlardan oluşan kümelere eşit kümeler denir. Eleman sayıları eşit olan kümelere denk kümeler denir.
A kümesi B kümesine eşit ise A = B,
C kümesi D kümesine denk ise C º D dir.
Eşit olan kümeler aynı zamanda denktir. Fakat denk kümeler eşit olmayabilir.
D. EŞİT OLMAYAN (FARKLI) KÜMELER
Tamamen aynı elemanlardan oluşmayan kümelere eşit olmayan (farklı) kümeler denir.
A = {a, b, c}, B = {a, b, d} ise A ¹ B dir.
A = {1, b, 7}, B = {a, 2, d, 5} ise A ¹ B dir.
E. BOŞ KÜME
Hiç bir elemanı olmayan kümeye boş küme denir.
Boş küme { } ya da Æ sembolleri ile gösterilir.
{Æ} ve {0} kümeleri boş küme olmayıp birer elemana sahip iki denk kümedir.
F. ALT KÜME
A kümesinin her elemanı, B kümesinin de elemanı ise A ya B nin alt kümesi denir.
A kümesi B kümesinin alt kümesi ise A Ì B biçiminde gösterilir.
A kümesi B kümesinin alt kümesi ise B kümesi A kümesini kapsıyor denir.
B É A biçiminde gösterilir.
C kümesi D kümesinin alt kümesi değilse C Ë D biçiminde gösterilir.
Alt Kümenin Özelikleri
Her küme kendisinin alt kümesidir. A Ì A
Boş küme her kümenin alt kümesidir. Æ Ì A
(A Ì B ve B Ì A) Û A = B dir.
(A Ì B ve B Ì C) Ş A Ì C dir.
n elemanlı bir kümenin alt kümelerinin sayısı 2n dir.
G. KÜMELERLE YAPILAN İŞLEMLER
1. Kümelerin Birleşimi
A nın elemanlarından veya B nin elemanlarından oluşan kümeye bu iki kümenin birleşim kümesi denir ve A È B biçiminde gösterilir.
Ziyaretinizi takdir ediyoruz. Platformumuz her zaman doğru ve güvenilir yanıtlar sunmak için burada. İstediğiniz zaman geri dönün. Zamanınızı ayırdığınız için minnettarız. En güncel bilgi ve sorularınıza yanıtlar almak için istediğiniz zaman geri dönün. Uzmanlarımızdan en güncel yanıtları ve bilgileri almak için Kalademi.me'ye geri dönün.