Kalademi.me ułatwia znalezienie rozwiązań dla wszystkich Twoich pytań dzięki aktywnej społeczności. Farklı disiplinlerdeki uzmanlardan kesin yanıtlar almak için kullanıcı dostu platformumuzu keşfedin. Farklı disiplinlerdeki uzmanlardan kesin yanıtlar almak için kapsamlı soru-cevap platformumuzu kullanın.

10 tane evrensel küme örnekleriii -acil-



Sagot :

EVRENSEL KÜME

Belirli bir alandaki tüm elemanları içeren kümeye Evrensel Küme denir. Genellikle E harfi ile gösterilir.

A = { 1, 7, 9 } ve B = { 11, 13 } olsun. Bu kümelerin evrensel kümesi Tek Sayılar veya Sayılar olabilir.

 

ALT KÜME

A kümesinin her elemanı, B kümesinin de elemanı ise A ya B nin alt kümesi denir.

A kümesi B kümesinin alt kümesi ise A Ì B biçiminde gösterilir.

A kümesi B kümesinin alt kümesi ise B kümesi A kümesini kapsıyor denir.

É A biçiminde gösterilir.

C kümesi D kümesinin alt kümesi değilse C Ë D biçiminde gösterilir.

Alt Kümenin Özelikleri

Her küme kendisinin alt kümesidir. A Ì A Boş küme her kümenin alt kümesidir. Æ Ì A (A Ì B ve B Ì A) ise A = B dir. A = B ise (A Ì B ve B Ì A) dir. (A Ì B ve B Ì C) ise A Ì C dir. n elemanlı bir kümenin alt kümelerinin sayısı 2n dir.

 

KÜMELERDE İŞLEMLER

1-Kümelerde Kesişim

A ve B kümesinin ortak elemanlarından oluşan kümeye A ile B nin kesişim kümesi denir ve A Ç B biçiminde gösterilir.

Kesişimin Özellikleri

Ç Æ = ÆÇ A = A A Ç B = B Ç A (A Ç B) Ç C = A Ç (B Ç C)

 

2-Kümelerde Birleşim

A kümesindeki ve B kümesindeki bütün elemanların oluşturduğu kümeye bu iki kümenin birleşim kümesi denir ve A È B  biçiminde gösterilir.

Birleşimin Özellikleri

È Æ = A A È A = A A È B = B È A A È (B È C) = (A È B) È C A Ì B ise, A È B = B A È B = Æ ise, (A = Æ ve B = Æ) dir.

 

3-İki Kümenin Farkı

A kümesinde olup, B kümesinde olmayan elemanların kümesine A fark B kümesi denir. A fark B kümesi A – B ya da A \ B biçiminde gösterilir.

 

4-Bir Kümenin Tümleyeni

A kümesinin dışındaki elemanlarının oluşturduğu kümeye A kümesinin tümleyeni denir. Başka bir ifade ile evrensel kümede olup A kümesinde olmayan elemanların oluşturduğu kümeye A kümesinin tümleyeni denir. A' şeklinde gösterilir.

Ör:

A = { 1, 2, 3 } ve E ={ Rakamlar } olsun. A kümesinin tümleyeni

A' = { 0, 4, 5, 6, 7, 8, 9} olur.

Not: A È A' = E

Yazar: www.matematikciler.org

A = { 1, 2, 3 } - A kümesinin eleman sayısı 3'tür.

B = { 123 } - B kümesinin eleman sayısı 1'dir. Çünkü rakamlar arasında virgül olmadığından tek elemanı vardır o da 123'tür.

 

A = { 0, 2, 4, 6, 8 } ise bu küme A = { Çift rakamlar} olarak gösterilebilir.

K = { 0, 1, 2, 3 } ise bu küme K = { x | x Î N ve x < 4 } olarak gösterilebilir.

P = { a, b, c } ise bu küme P = { Alfabemizin ilk 3 harfi } olarak gösterilebilir.