Uzyskaj najlepsze rozwiązania wszystkich swoich pytań na Kalademi.me, zaufanej platformie Q&A. Soru-cevap platformumuz, farklı bilgi alanlarında kesin bilgiler sunmaya hazır uzmanlarla sizi bir araya getiriyor. Farklı alanlardaki profesyonellerden kapsamlı çözümler bulmak için platformumuzu kullanın.
Sagot :
Tanım : Sabit olmayan, birden fazla polinom un çarpımı biçimin de yazılamayan polinomlara indirgenemeyen polinomlar denir.
Baş katsayısı bir olan indirgenemeyen polinomlar Asal polinomlar denir.
* P(x) = x2 + 4 , Q(x) = 3x2 + 1, R(x) = 2x – 3 , T(x) = - x + 7
Polinomları indirgenemeyen polinomlar dır.
P(x) = x2 + 4 baş katsayısı 1 olduğundan asal polinom dur.
Tanım : İçindeki değişkenlerin alabileceği her değer için doğru olan eşitliklere özdeşlik denir.
* a) x3 (x2 – 2x) = x5 – 2x4 b) a2 (x + y)2 = a2 x2 + a2 y2 özdeşlik
c) a2 (x +y)2 = a2 x2 + a2 y2 özdeşlik değildir.
ÖNEMLİ ÖZDEŞLİKLERI) Tam Kare Özdeşliği:
a) İki Terim Toplamının Karesi : (a + b)2 = a2 + 2ab + b2
b) İki Terim farkının Karesi : (a – b)2 = a2 – 2ab + b2
İki terim toplamının ve farkının karesi alınırken; birincinin karesi,birinci ile ikincinin iki katı, ikincinin karesi alınır.
c) Üç Terim Toplamının Karesi: (a +b + c)2 = a2 + b2 + c2 + 2 (ab + ac + bc) şeklindedir.
II) İki Terim Toplamı veya Farkının Küpü :
a) İki Terim Toplamının Küpü : (a + b)3 = a3 + 3a2b + 3ab2 + b3
b) İki Terim Farkının Küpü : (a – b)3 = a3 – 3a2b + 3ab2 – b3
Birinci terimin küpü;() birincinin karesi ile ikincinin çarpımının 3 katı, (+) birinci ile ikincinin karesinin çarpımının 3 katı,() ikincinin küpü biçimindedir. Bu açılımlara Binom Açılımıda denir
Not:. Paskal Üçgeni kullanılarak 4.,5.,6.,...Dereceden iki terimli lerin özdeşliklerini de yazabiliriz.
III) İki Kare Farkı Özdeşliği: (a + b) (a – b) = a2 – b2
İki terim toplamı ile farkının çarpımı; birincinin karesi ile ikincinin karesinin farkına eşittir
IV) xn + yn veya xn - yn biçimindeki polinomların Özdeşliği :
i) İki küp Toplam veya Farkı : a3 + b3 = (a + b) (a2 – ab + b2)
a3 – b3 = (a – b) (a2 + ab + b2)
ii) a4 + b4 = (a + b) (a3 – a2b + ab2 – b3)
a4 – b4 = (a2 + b2) (a + b) (a – b)
iii) a5 + b5 = (a + b) (a4 – a3b + a2 b2 – ab3 + b4)
a5 – b5 = (a – b) (a4 + a3b + a2 b2 + ab3 + b4)
iv) a6 + b6 = (a + b) (a5 – a4b + a3 b2 – a2b3 + ab4 – b5)
a6 – b6 = (a – b) (a2 + ab + b2) (a+ b) (a2 + ab + b2)
v) a7 + b7 = (a + b) (a6 – a5b + a4b2 – a3b3 + a2b4 – ab5 + b6)
a7 – b7 = (a – b) (a6 + a5b + a4b2 + a3b3 + a2b4 + ab5 + b6)
Özdeşlikleri aşağıdaki şekilleriyle düzenleyerek kullanabiliriz
1) x2 + y2 = (x + y)2 – 2xy
2) x2 + y2 = (x – y)2 + 2xy
3) (x – y)2 = (x + y)2 – 4xy
4) (x + y)2 = (x – y)2 + 4xy
5) x3 – y3 = (x – y)3 + 3xy (x – y)
6) x3 + y3 = (x + y)3 – 3xy (x + y)
7) x2 + y2 + z2 = (x + y + z)2 – 2 (xy + xz + yz)
1) İki sayının toplamı 17, kareleri toplamı 145 ise; bu sayıların çarpımı kaçtır?
x2 + y2 = (x + y)2 – 2xy 2ab = 289 – 145
145 = (17)2 – 2ab 2ab = 144 ab = 72 C= 72
2) a – b = 6 (a + b)2 = (a – b)2 + 4ab (a + b)2 = 44
a . b = 2 = ( 6 )2 + 4.2 (a + b) =
a + b = ? = 36 + 8 =
3) a – 2b = 3 ise; a2 + 4b2 = ? a2 + 4b2 = (a – 2b)2 +2. a2b
a . b = 2 = ( 3 )2 + 2. 2 .2 = 17
4) a + b = 12 ise; a . b = ? (a + b)2 = (a – b)2 + 4ab 4 ab = 108
a – b = 6 ( 12 )2 = ( 6 )2 + 4ab ab = 27
5) ise; x2 + y2 = (x – y)2 + 2xy
20
6) ise;
Ç = {- 4 , 4}
7) m + n =8 x3 + y3 = (x + y)3 – 3xy(x + y)
m . n = 1 m3 + n3 = (m + n)3 – 3mn (m + n)
m3 + n3 = ? = ( 8 )3 – 3 . 1 . 8 = 488
8) a3 – b3 = 50 x3 – y3 = (x – y)3 + 3xy(x – y)
a – b = 2 ise; a3 – b3 = (a – b)3 + 3ab(a – b)
a . b = ? 50 = 8 + 6ab 6ab = 42ab = 7
9) ise; x3 – y3 = (x – y)3 + 3xy(x – y)
= ( 3 )3 + 3.1.( 3 ) = 36
10) ise; x3 + y3 = (x + y)3 – 3xy(x + y)
198
11) a + b + c = ? a2 + b2 + c2 = (a + b + c) – 2(ab + aç + bc)
ab + ac + bc = 12 = ( 7 )2 – 2 ( 12 )
a2 + b2 + c2 = ? = 49 – 24 = 25
12) ise;
= 15
13) ise; C = 120
14) ise; C = 63
15) ise; C = 154
16) ise; C = 75
17) ise; C = 999
ÇARPANLARA AYIRMA KURALLARI
1) Ortak Çarpan Parantezine Alarak Çarpanlara Ayırma : Her terimde ortak olarak bulunan çarpan, parantez dışına alınır. Her terimin ortak çarpana bölümü parantez içine yazılır
1) Aşağıdaki ifadeleri Çarpanlarına ayırınız.
a) 3a + 3b = 3(a + b) b) 5m – 10mn = 5m (1 – 2)
c) 12x + 9y =3(4x + 3y) d) 3a2b – 2ab2 = ab (3a – 2b)
e) 3ax + 3ay – 3az f) (a – b) x + 3 (a – b)
g) (m – n) – (a + b)(m – n) h) – a – b – x2 (a + b)
ı) x2(p – 3) + ma2 (3 – p) i) 1 – 2x + m (2x – 1)
2) Gruplandırma Yaparak Çarpanlara Ayırma : Bütün terimlerde ortak çarpan yoksa, terimler ikişer, ikişer, üçer, üçer guruplandırılır. Gruplar ayrı, ayrı ortak çarpanlarına ayrılır.
2) a) mx + ny + my + nx b) xy – xb – yb + b2
c) x4 – 4 + 2x3 – 2x d) 2x2 –3x – 6xy + 9y
e) x3 – x + 1 – x2 f) x4 – x + x3 – 1
g) ab(c2 – d2) – cd (a2 – b2) h) ac2 + 3c – bc – 2ac – 6 + 2b
ı) mn(zi + y2) + zy (m2 + n2) i) a2b2 + 1 – (a2 + b2)
3) Tam Kare şeklindeki İfadeleri Çarpanlara Ayırma : Polinom üç terimli ise, ilk ve son terimin kare köklerinin çarpımı nın iki katı ortadaki terimi veriyorsa, bu tam kare şeklinde ifadedir a2 + 2ab + b2 = (a + b)2, a2 – 2ab + b2 = (a – b)2
3) a) x2 + 4xb + 4b2 b) 4a2 + 12ab + 9b2 c) 4a2b2 – 4abc + c2
4) a) a2b + 8ab +16b3 b) 2m3 – 28m2 +98m c) 4x3y – 12x2y2 + 9xy3
4) İki Kare Farkı Şeklindeki İfadeleri Çarpanlara Ayırma : Polinom iki terimli , işaretleri farklı, kare kökleri alınıyorsa; Bu Polinom iki kare farkı biçiminde çarpanlarına ayrılır. a2 – b2 = (a + b) (a – b)
5) a) 25 – 9a2b2 b) x4 – 1 c) (m – n)2 – (m + n)2
6) a) 18x2 – 2y2 b) 2a2b3 – 32b c) 12x3y – 75xy5
7) a) 9a2 – 6a +1 – b2 b) x2 – 12x + 36 – 4y2 c)16m2 – n2 – 6n – 9
d)1 – x2 – 2xy – y2 e) m2 – n2 – 3m + 3n f) a2 – 25b2 – a + 5b
g) a2 – 4m2 – 12mn – 9n2 h) 9a2 –16m4 – 12axy + 4x2y2
5) İki Küp Toplamı - Farkı İfadeleri Çarpanlara Ayırma: a3 + b3 = (a + b) (a2 – ab + b2) , a3 – b3 = (a – b) (a2 + ab + b2)
8) a) a3 + 8 b) 8 – m3 c) x3 + 1 d) 27a3 – 64 e) x3a3 + b3
9) a) 81m3 – 3n3 b) 24x3y – 3y c) 2x + 54x4
10) a) (x +y)3 – 8 b) a3 + 8(a - b)3 c) (m – n)3 + 1
6) xn yn biçimindeki polinomları Çarpanlara Ayırma:
11) a) x4 + 1 = (x + 1) (x3 – x2 + x – 1)
b) x4 – 1 = (x2 + 1) (x + 1) (x – 1)
c) x5 + 25 = (x + 2) (x4 – 2x3 + 4x2 – 8x + 16)
d) x5 – 1 = (x – 1) (x4 + x3 + x2 + x + 1)
7) Bir Terim Ekleyip Çıkararak Çarpanlara Ayırma: Verilen İfade uygun bir terim ekleme ve çıkarma yolu ile tam kare ve iki kare farkı şeklinde çarpanlara ayırma işlemine benzetilir
12) 4x4 + 7x2 + 4 ifadesini Çarpanlarına ayırınız.
4x4 + 7x2 + 4 = 4x4 + 7x2 + 4 + x2 – x2 = 4x4 + 8x2 + 4– x2
= (2x2 + 2)2 – x2
2x2 2 = (2x2 + 2 – x) (2x2 + 2 + x)
2.2x2.2 = 8x2 = (2x2 – x + 2) (2x2 + x + 2)
Atla: kullan, ara
x2 + cx + d = (x + a)(x + b)
Çarpanlara ayırma, bir polinomun, tam sayının ya da matrisin kendisini oluşturan bileşenlerin çarpımı şeklinde yazılmasıdır. Örneğin 15 sayısı 3 ve 5 asal sayılarının çarpımı şeklinde yazılabilir: 3 × 5, ya da x2 − 4 polinomu (x − 2)(x + 2) şeklinde yazılabilir.
Çarpanlara ayırmadaki temel amaç bir bütünü daha küçük yapılara ayırmaktır; sayıları asal sayıların çarpımı, polinomları indirgenemeyen polinomların çarpımı şeklinde yazmak gibi. Çarpanlara ayırmanın tersi genişletmedir.
Asal çarpanlarına ayırma çok büyük sayılar için zor bir problemdir. Bu problemin bilinen bir çözümü yoktur. Bu yüzden RSA gibi açık anahtarlı şifreleme yöntemlerinde kullanılır.
Aradığınız bilgileri bulduğunuzu umuyoruz. Daha fazla yanıt ve güncel bilgi almak için tekrar ziyaret edin. Aradığınız bilgileri bulduğunuzu umuyoruz. Daha fazla yanıt ve güncel bilgi almak için tekrar ziyaret edin. Sorularınıza yanıt vermekten mutluluk duyuyoruz. Daha fazla yanıt için Kalademi.me'ye geri dönün.