Kalademi.me, tüm sorularınıza uzmanların yardımıyla yanıt bulmanız için burada. Farklı alanlardaki uzmanlardan doğru bilgiler alarak soru-cevap platformumuza katılın. Farklı alanlardaki profesyonellerden kapsamlı çözümler bulmak için platformumuzu kullanın.
Sagot :
1.soru: 8 tane sayının aritmetik ortalaması 15’tir. Bu sayılara 21 ve 29 katılsaydı, aritmetik ortalama kaç olurdu?
Çözüm:
Bu sekiz sayının toplamı,
8 . 15 = 120’dir
2.soru: Ardışık 6 tane doğal sayının toplamı, bu sayıların en küçüğünün 7 katına eşittir. Bu sayıların en büyüğü kaçtır?
Çözüm:
Ardışık 6 doğal sayı; x, x + 1, x + 2, x + 3, x + 4, x + 5 olsun.
x + (x + 1) + … + (x + 5) = 7x
6x + 15 = 7x Þ x = 15 olur.
Bu sayıların en büyüğü
x + 5 = 15 + 5 = 20’dir.
3.soru: Rakamları 0 ve 1’den farklı olan dört basamaklı abcd sayısının rakamlarının sayı değerleri birer azaltılırsa sayı kaç azalır?
Çözüm:
(abcd) = 2376 olsun.
Bu sayının rakamlarının sayı değerleri birer azaltılırsa sayı 1265 olur.
Fark 2376 – 1265 = 1111’dir.
4.soru: İki basamaklı (ab) sayısının dört katından, (ba) sayısının 3 katı çıkarıldığında fark 218 oluyor. b = 3 ise a kaçtır?
Çözüm:
(ab) = 10a + b ve (ba) = 10b + a’dır. b = 3 ise,
4 . (10a + 3) – 3(10 . 3 + a) = 218
40 . a + 12 – 90 – 3a = 218
37 . a = 296
a = 8 olur.
5.soru: a, b, c ardışık tek sayma sayılarıdır. a . c = 357 ise b + c kaçtır?
Çözüm:
Ardışık üç tek sayı; a = x – 2, b = x, c = x + 2 olsun.
a . c = 357 Þ (x – 2) . (x + 2) = 357
x2 – 4 = 357
x2 = 361 = 192
Buradan x = 19 bulunur.
Buna göre; b = 19, c = 21 ve b + c = 40 olur.
6.soru: Toplamları 57 olan iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 5, klan 3 oluyor. bu iki sayının çarpımı kaçtır?
Çözüm:
Büyük sayı x ise, küçük sayı (57 – x) olur.
x = (57 – x) . 5 + 3 bölme eşitliğinden,
x = 48 bulunur.
57 – x = 57 – 48 = 9 dur.
Bu iki sayının çarpımı, 48 . 9 = 432 olur.
7.soru: Ardışık üç sayma sayısının karelerinin toplamı 149 olduğuna göre, bu üç sayının toplamı kaçtır?
Çözüm:
Bu sayılar; x – 1, x ve x + 1 olsun.
(x – 1)2 + x2 + (x + 1)2 = 149
3×2 = 147
x2 = 49
x = 7
Bu üç sayı; 6, 7 ve 8’dir.
6 + 7 + 8 = 21’dir.
8.soru: 6 ve 7 sayılarına bölündüğünde 5 kalanını veren üç basamaklı en küçük sayma sayısının en az kaç fazlası 9 ile tam bölünür?
Çözüm:
A = 6x + 5 = 7y + 5 ise, 6 ile 7’nin ekok’u 42 olduğundan;
A = 42 . t + 5’tir. A’nın en küçük üç basamaklı değeri, t = 3 için 131’dir.
131 sayısının rakamlarının toplamı 1 + 3 + 1 = 5 ve 9 – 5 = 4 olduğundan, 131’in 4 fazlası 9 ile tam bölünür.
9.soru: 3 basamaklı abc doğal sayısı 6 ile bölünüyor. ise bac sayısı, aşağıdakilerden hangisine tam bölünmez?
Çözüm:
(abc) sayısı 6 ile tam bölündüğünde c çifttir. ve c çift koşulunun sağlanması için c = 2 olmalıdır. Bu durumda,
(abc) = 642 ve (bac) = 462 olur.
462 = 2 . 3 . 7 . 11 sayısının asal çarpanları arasında 22 . 3 bulunmadığından, 462 sayısı 12 ile tam bölünmez[Üye Olmadan Linkleri Göremezsiniz. Üye Olmak için TIKLAYIN...]
10.soru: 540 . x = b2 eşitliğinde x ve b sayma sayılarıdır. bu koşula uyan b sayılarının en küçüğü kaçtır?
Çözüm:
540 = 22 . 33 . 5 tir.
22 . 33 . 5 . x = b2 eşitliğinde, x en az 3 . 5 olmalıdır. Buna göre,
22 . 33 . 5. 3 . 5 = b2
22 . 34 . 52 = b2 Þ (2 . 32 .5)2 = b2
b = 2 . 32 . 5 = 90 olur.
11.soru: a, m, n sayma sayılarıdır. a = 9m + 8 = 6n + 5 koşullarını sağlayan 300’den büyük en küçük a sayma sayısı kaçtır?
Çözüm:
a + 1 = 9m + 9 = 6n + 6 olduğundan, a + 1 sayısı hem 9, hem de 6 ile bölünebileceğinden 18 ile de tam bölünür. 300’den büyük ve 18’in tam katı olan ilk sayı 306 olduğundan,
a + 1 = 306 a = 305’tir.
12.soru: -2 . (3 – 5) – [(5 – 13) : (-2) – (-2)3] işleminin sonucu nedir?
Çözüm:
-2 . (2 – 5) – [(5 – 13) : (-2) – (-2)3]
= -2 . (-2) – [(-8) : (-2) – (-8)]
= 4 – [4 + 8] = -8
13.soru: A = 6 . 105 + 2 . 102 + 3, B = 87532 olduğuna göre, A + B kaç olur?
Çözüm:
A = 6 . 105 + 2 . 102 + 3 = 600203 ve
B = 87532 olduğundan, A + B = 687735 olur
14.soru: Üç basamaklı abc doğal sayısı 15 ile tam bölünüyor. a + b + c en fazla kaç olabilir?
Çözüm:
Sayı hem 5, hem de 3 ile tam bölünebildiğinde, c = 5 ve a + b + 5 = 3 . k = 21 olur
Çözüm:
Bu sekiz sayının toplamı,
8 . 15 = 120’dir
2.soru: Ardışık 6 tane doğal sayının toplamı, bu sayıların en küçüğünün 7 katına eşittir. Bu sayıların en büyüğü kaçtır?
Çözüm:
Ardışık 6 doğal sayı; x, x + 1, x + 2, x + 3, x + 4, x + 5 olsun.
x + (x + 1) + … + (x + 5) = 7x
6x + 15 = 7x Þ x = 15 olur.
Bu sayıların en büyüğü
x + 5 = 15 + 5 = 20’dir.
3.soru: Rakamları 0 ve 1’den farklı olan dört basamaklı abcd sayısının rakamlarının sayı değerleri birer azaltılırsa sayı kaç azalır?
Çözüm:
(abcd) = 2376 olsun.
Bu sayının rakamlarının sayı değerleri birer azaltılırsa sayı 1265 olur.
Fark 2376 – 1265 = 1111’dir.
4.soru: İki basamaklı (ab) sayısının dört katından, (ba) sayısının 3 katı çıkarıldığında fark 218 oluyor. b = 3 ise a kaçtır?
Çözüm:
(ab) = 10a + b ve (ba) = 10b + a’dır. b = 3 ise,
4 . (10a + 3) – 3(10 . 3 + a) = 218
40 . a + 12 – 90 – 3a = 218
37 . a = 296
a = 8 olur.
5.soru: a, b, c ardışık tek sayma sayılarıdır. a . c = 357 ise b + c kaçtır?
Çözüm:
Ardışık üç tek sayı; a = x – 2, b = x, c = x + 2 olsun.
a . c = 357 Þ (x – 2) . (x + 2) = 357
x2 – 4 = 357
x2 = 361 = 192
Buradan x = 19 bulunur.
Buna göre; b = 19, c = 21 ve b + c = 40 olur.
6.soru: Toplamları 57 olan iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 5, klan 3 oluyor. bu iki sayının çarpımı kaçtır?
Çözüm:
Büyük sayı x ise, küçük sayı (57 – x) olur.
x = (57 – x) . 5 + 3 bölme eşitliğinden,
x = 48 bulunur.
57 – x = 57 – 48 = 9 dur.
Bu iki sayının çarpımı, 48 . 9 = 432 olur.
7.soru: Ardışık üç sayma sayısının karelerinin toplamı 149 olduğuna göre, bu üç sayının toplamı kaçtır?
Çözüm:
Bu sayılar; x – 1, x ve x + 1 olsun.
(x – 1)2 + x2 + (x + 1)2 = 149
3×2 = 147
x2 = 49
x = 7
Bu üç sayı; 6, 7 ve 8’dir.
6 + 7 + 8 = 21’dir.
8.soru: 6 ve 7 sayılarına bölündüğünde 5 kalanını veren üç basamaklı en küçük sayma sayısının en az kaç fazlası 9 ile tam bölünür?
Çözüm:
A = 6x + 5 = 7y + 5 ise, 6 ile 7’nin ekok’u 42 olduğundan;
A = 42 . t + 5’tir. A’nın en küçük üç basamaklı değeri, t = 3 için 131’dir.
131 sayısının rakamlarının toplamı 1 + 3 + 1 = 5 ve 9 – 5 = 4 olduğundan, 131’in 4 fazlası 9 ile tam bölünür.
9.soru: 3 basamaklı abc doğal sayısı 6 ile bölünüyor. ise bac sayısı, aşağıdakilerden hangisine tam bölünmez?
Çözüm:
(abc) sayısı 6 ile tam bölündüğünde c çifttir. ve c çift koşulunun sağlanması için c = 2 olmalıdır. Bu durumda,
(abc) = 642 ve (bac) = 462 olur.
462 = 2 . 3 . 7 . 11 sayısının asal çarpanları arasında 22 . 3 bulunmadığından, 462 sayısı 12 ile tam bölünmez[Üye Olmadan Linkleri Göremezsiniz. Üye Olmak için TIKLAYIN...]
10.soru: 540 . x = b2 eşitliğinde x ve b sayma sayılarıdır. bu koşula uyan b sayılarının en küçüğü kaçtır?
Çözüm:
540 = 22 . 33 . 5 tir.
22 . 33 . 5 . x = b2 eşitliğinde, x en az 3 . 5 olmalıdır. Buna göre,
22 . 33 . 5. 3 . 5 = b2
22 . 34 . 52 = b2 Þ (2 . 32 .5)2 = b2
b = 2 . 32 . 5 = 90 olur.
11.soru: a, m, n sayma sayılarıdır. a = 9m + 8 = 6n + 5 koşullarını sağlayan 300’den büyük en küçük a sayma sayısı kaçtır?
Çözüm:
a + 1 = 9m + 9 = 6n + 6 olduğundan, a + 1 sayısı hem 9, hem de 6 ile bölünebileceğinden 18 ile de tam bölünür. 300’den büyük ve 18’in tam katı olan ilk sayı 306 olduğundan,
a + 1 = 306 a = 305’tir.
12.soru: -2 . (3 – 5) – [(5 – 13) : (-2) – (-2)3] işleminin sonucu nedir?
Çözüm:
-2 . (2 – 5) – [(5 – 13) : (-2) – (-2)3]
= -2 . (-2) – [(-8) : (-2) – (-8)]
= 4 – [4 + 8] = -8
13.soru: A = 6 . 105 + 2 . 102 + 3, B = 87532 olduğuna göre, A + B kaç olur?
Çözüm:
A = 6 . 105 + 2 . 102 + 3 = 600203 ve
B = 87532 olduğundan, A + B = 687735 olur
14.soru: Üç basamaklı abc doğal sayısı 15 ile tam bölünüyor. a + b + c en fazla kaç olabilir?
Çözüm:
Sayı hem 5, hem de 3 ile tam bölünebildiğinde, c = 5 ve a + b + 5 = 3 . k = 21 olur
1. (-101) ile (+99) arasındaki tam sayıların toplamı kaçtır?
A) -199 B)1999 C) -201 D)201
2. 4: 5 - 3 : 5 işleminin sonucu kaçtır?
A) 48 B) 1 C) 53 D) 7
3. 2x+1 + 3x-1 = 9 denklemini sağlayan x değeri aşağıdakilerden hangisidir?
A) 3 B)5 C)7 D)9
4. (2x+1)-4. (x-3)=x+7 denklemini sağlayan x değeri kaçtır?
A) -3 B) -8 C) 7 D)13
5. 6 işçinin 12 günde yaptıkları bir işin 8 günde yapılabilmesi için kaç işçiye daha ihtiyaç vardır?
A) 1 B)2 C)3 D)5
6. Toplamları 33 olan iki sayıdan büyüğü küçüğe bölündüğünde bölüm 3 kalan 5 olmaktadır. Buna göre büyük sayı kaçtır?
A) 15 B) 23 C) 25 D)26
7. Bir anne 36, oğlu ise 10 yaşındadır. Kaç yıl sonra annenin yaşı oğlunun yaşının 3 katına eşit olur?
A) 3 B)5 C) 7 D)10
8. Burcu her gün eşit sayfa kitap okuyarak bir kitabı 8 günde bitiriyor. Eğer günde 5 sayfa daha fazla okusaydı kitap 6 günde bitecekti. Buna göre kitap kaç sayfadır?
A) 80 B) 120 C) 160 D)200
9. %24’ü 60 olan sayının %56’sı kaçtır?
A)84 B)96 C)120 D)140
10. Bir işi Ahmet 15 günde, Ali 30 günde yapabilmektedir. İkisi beraber aynı işin 3 ’ini kaç günde yaparlar?
A)2 B)4 C)6 D)9
........................................
...................................................
DAHA FAZLA BULAMADIM..
en iyi secersen sevinirim.. :)
Ziyaretiniz bizim için çok önemli. Herhangi bir sorunuz olduğunda güvenilir yanıtlar almak için geri dönmekten çekinmeyin. Hizmetimizi kullandığınız için teşekkür ederiz. Tüm sorularınıza doğru ve güncel yanıtlar vermek için her zaman buradayız. Kalademi.me'yi kullandığınız için teşekkür ederiz. Sorularınıza yanıt bulmak için bizi ziyaret etmeye devam edin.