Kalademi.me ułatwia znalezienie rozwiązań dla wszystkich Twoich pytań dzięki aktywnej społeczności. Sorularınıza hızlı ve güvenilir çözümler bulmak için uzman topluluğumuzla bağlantı kurun. Sorularınıza hızlı ve güvenilir çözümler bulmak için deneyimli uzman topluluğumuzdan faydalanın.
Sagot :
[tex] \Large \mathbb{SOLUTION:} [/tex]
[tex] \begin{array}{l} \bold{Given:}\ \begin{cases} \ V(0) = 1000 \\ \textsf{Input of brine} = 6\ \textsf{L/min} \\ C_{\textsf{in}}= 0.01\ \textsf{kg/L} \\ \textsf{Output of brine} = 6\ \textsf{L/min} \end{cases} \\ \\ \textsf{Let }y(t)\textsf{ be the amount of salt dissolved in the} \\ \textsf{tank (in kg) after }t\textsf{ minutes. Now, we have }\\ C_{\textsf{out}} = \dfrac{y(t)}{1000 + 6t - 6t} = \dfrac{y(t)}{1000} = x(t), \\ \textsf{where }x(t)\textsf{ is the salt concentration in the brine} \\ \textsf{leaving the tank at some time }t. \\ \\ \textsf{The basic principle determining the differential} \\ \textsf{equation is} \\ \\ \Large \quad \quad \dfrac{dy}{dt} = R_{\textsf{in}} - R_{\textsf{out}} \\ \\ \textsf{where:} \end{array} [/tex]
[tex] \begin{array}{l} \bullet \: R_{\textsf{in}} = \textsf{rate of the salt entering} \\ \quad \quad\: \: = \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt inflow}\end{array}}\right) \times \small(\textsf{Input of brine}) \end{array} [/tex]
[tex] \begin{array}{l} \bullet \: R_{\textsf{out}} = \textsf{rate of the salt leaving} \\ \quad \quad\:\:\: = \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt outflow}\end{array}}\right) \times \small(\textsf{Output of brine}) \end{array} [/tex]
[tex] \begin{array}{l} \textsf{Note that }\dfrac{y(t)}{1000} = x(t) \\ y(t) = 1000x(t) \implies \dfrac{dy}{dt} = 1000\dfrac{dx}{dt} \\ \\ R_{\textsf{in}} = 6(0.1) = 0.6\ \textsf{kg/min} \\ R_{\textsf{out}} = 6x(t)\ \textsf{kg/min} \\ \\ \textsf{Substituting these to the differential equation} \\ \textsf{above,} \\ \\ \implies 1000\dfrac{dx}{dt} = 0.6 - 6x \\ \\ \textsf{By separation of variables,} \\ \\ \displaystyle \int_0^{0.05} \dfrac{1000}{0.6 - 6x} dx = \int_0^T dt \\ \\ -\dfrac{1000}{6}\ln (0.6 - 6x) \Big |_0^{0.05} = T\\ \\ \therefore \boxed{T = 115.52\ \textsf{ mins}}, \textsf{where }T\textsf{ is the time taken} \\ \textsf{for the tank to reach a salt concentration of} \\ 0.05\textsf{ kg/L}.\end{array} [/tex]
(シ_ _)シ
Bu bilgilerin size faydalı olduğunu umuyoruz. Sorularınıza daha fazla yanıt almak için istediğiniz zaman geri dönebilirsiniz. Ziyaretiniz için teşekkür ederiz. İhtiyacınız olan bilgileri her zaman bulabilmeniz için buradayız. Kesin yanıtlar için referans siteniz Kalademi.me. Daha fazla bilgi için geri dönmeyi unutmayın.