Kalademi.me'ya hoş geldiniz, uzmanların yardımıyla hızlı ve doğru yanıtlar alabileceğiniz yer. Deneyimli profesyonellerden ayrıntılı yanıtlar almak için kullanıcı dostu platformumuzu kullanın. Deneyimli profesyonellerden ayrıntılı yanıtlar almak için kullanıcı dostu platformumuzu keşfedin.
Sagot :
Cevap:
RASYONEL DENKLEMLER
Rasyonel ifade şeklinde bulunan denklemleri çözerken kesirlerde olduğu gibi işlem yapacağız. Bazen payda eşitleyeceğiz, bazen genişletme, sadeleştirme yapacağız, bazen de içler-dışlar çarpımı yapacağız.
İşlemler sonunda bulduğumuz denklemdeki bilinmeyenin değerine denklemin kökü denir. Denklemin köklerinin oluşturduğu kümeye denklemin çözüm kümesi denir.
ÖRNEK: x+142x=4 denklemini sağlayan x değerini bulalım.
İçler-Dışlar çarpımı yaparız. Daha sonra bilinmeyenleri eşitliğin bir tarafına toplarız ve cevabı buluruz.
x+14=8x14=8x−x14=7xx=2
ÖRNEK: x2+x3=5 denklemini sağlayan x değerini bulalım.
Önce paydaları eşitleyip toplama işlemini yaparız, daha sonra içler-dışlar çarpımı yaparak çözümü yaparız.
3x6+2x6=55x6=55x=30x=6
ÖRNEK: 4x−10x−5=10x−5−65 denklemini sağlayan x değerlerini bulalım.
Bilinmeyenleri eşitliğin sol tarafına alıp işlem yapalım. Daha sonra içler-dışlar çarpımı yaparak çözüme ulaşalım.
4x−10x−5−10x−5=−654x−20x−5=−6520x−100=−6x+3020x+6x=30+10026x=130x=5
x’in değerini 5 bulduk ancak bulduğumuz değer denklemi sağlamaz çünkü denklemde x yerine 5 yaptığımızda payda 0 oluyor. Bu nedenle x=5 değeri için denklemin çözümü olamaz. O zaman bu denklemin çözüm kümesi boş kümedir.
Denklemin sonucunda bulduğumuz değer paydayı sıfır yapıyorsa o değer denklemin kökü olarak kabul edilmez.
Adım adım açıklama:
iyi çalışmalar dilerim en iyi şecersen severim?
Hizmetimizi tercih ettiğiniz için teşekkür ederiz. Tüm sorularınıza en iyi yanıtları vermeyi taahhüt ediyoruz. Bizi tekrar ziyaret edin. Zamanınızı ayırdığınız için minnettarız. Herhangi bir sorunuz olduğunda doğru yanıtlar almak için istediğiniz zaman geri dönün. Kalademi.me'yi kullandığınız için teşekkür ederiz. Sorularınıza yanıt bulmak için bizi ziyaret etmeye devam edin.