Kalademi.me, tüm sorularınıza uzmanların yardımıyla yanıt bulmanız için burada. Profesyonellerle bağlantı kurarak sorularınıza hızlı ve etkili yanıtlar almak için platformumuzu kullanın. Deneyimli profesyonellerden ayrıntılı yanıtlar almak için kullanıcı dostu platformumuzu keşfedin.

üslü sayılar konuanlatım



Sagot :

Üs Kavramı:

(a)          reel sayı ve (m) bir pozitif tamsayı olmak üzere; am  ifadesi, m tane (a) nın çarpımını gösterir.

 

am = a . a . a...a şeklinde gösterilir.

 

Örnekler:

 

23 = 2 . 2 . 2 =8

52 = 5 . 5 = 25

 

 

Özellikler:

 

·    Sıfırdan farklı bir sayını sıfırıncı kuvveti 1’e eşittir.

am = a0 = 1

 

Örnekler:  30 = 1

 

·    Bir sayının birinci kuvveti kendisine eşittir.

am = a1 = a

 

Örnekler:  21 = 2

 

·    Bir kesrin kuvvetini almak için pay ve paydasının ayrı ayrı kuvvetleri alınır.

( a )m = am

b         bm

Örnekler: ( 2 )5 = 25 = 32

3         35    243

 

·    Üslü bir ifadenin kuvveti alınırken üsler çarpılır.

(am)n = am . n

 

Örnekler: ( 23)2 = 23 . 2 = 26 = 2 . 2 . 2 . 2 . 2 . 2 = 64

 

·    a ¹ 0 reel sayı ve m bir pozitif tamsayı için;

 

a-m = 1

am

 

Örnekler:  23  = 1   =  1

23      8

 

·    Bir kesrin üssü negatif ise kesir ters çevrilip üssü pozitif yapılır.

 

( a )-m = ( b )m

b             a

 

Örnekler:   ( 2 )-3 = ( 3 )3 =27

3             2        8

 

 

Tek veya Çift Kuvvetler:

 

(-2)4 = (-2) .(-2) . (-2) . (-2) = +16

 

 

Sıfırdan farklı bir sayının;

 

·    Çift kuvvetleri pozitiftir.

·    Tek kuvvetleri ise bu sayı ile aynı işaretlidir.

 

 

Üslü İfadelerde Toplama ve Çıkarma:

 

Tabanları ve üsleri aynı olan ifadelerin katsayıları toplanır ya da çıkarılır.

 

Örnek

 

 

 

Örnek: 3a5 –8a5  + a5 toplamının sonucu nedir?

 

Çözüm: a5 ’lerin bilgi yelpazesi.net katsayılarını toplayalım.

(3-8+1) a5  = 4a5

 

 

Üslü İfadelerde Çarpma:

 

·    Tabanları aynı üsleri farklı olan üslü ifadeler çarpılırken ortak taban, taban olarak alınır. Üsler toplanıp üs olarak yazılır.

am . an = am+n

 

·    Tabanları farklı üsleri aynı olan üslü ifadeler çarpılırken tabanlar çarpılıp taban olarak yazılır ortak üs, üs olarak yazılır.

am . bm = (a+b)m

 

·    Tabanları ve üsleri farklı molan üslü ifadeler çarpılırken, önce kuvvetler alınır sonra çarpma işlemi yapılır.

 

Örnek: 23 . 52 =  8 . 25 = 200

ÜSLÜ NİCELİKLER

Bir sayının kendisi ile tekrarlı çarpımı, o sayının kuvveti olarak adlandırılır.Bu tekrarlı çarpımın sonucunu bulmaya kuvvet alma işlemi denir.Kuvvet kelimesi ile üs kelimesi eşdeğerdir.

a.a.a.a.a…..a=an (n tane a’nın çarpımı) (a=taban,n=üs veya kuvvet)

3x3x3x3x3=35 (5 tane 3’ün yan yana yazılıp çarpılmasıdır.)

2x2x2x2x2x2x2x2x2=29

(-4)x(-4)=(-4)2

Sıfırdan farklı her sayının sıfırıncı kuvveti 1’e eşittir.Sıfırın sıfırıncı kuvveti tanımsızdır. 00=tanımsız

n0=1

(-1)0=1

70=1

Sıfırın sıfırdan farklı bütün kuvvetleri 0’a eşittir.

01=0

05=0

0109=0

10’un pozitif kuvvetleri:

101=10

102=100

103=1000

104=10000

Negatif bir tam sayının tek kuvvetleri daima negatif sayıdır.

(-2)1=-2

(-2)3=-8

(-2)5=-32

Negatif bir tam sayının çift kuvvetleri daima pozitif sayıdır.

(-2)2=4

(-2)4=16

(-2)6=64