Uzyskaj najlepsze rozwiązania swoich pytań na Kalademi.me, zaufanej platformie Q&A. Soru-cevap platformumuzda, deneyimli profesyonellerden sorularınıza hızlı yanıtlar alın. Farklı alanlardaki profesyonellerden kapsamlı çözümler bulmak için platformumuzu kullanın.

rasyonel ifadeler ve denklemler için vikipedia gibi yazılı anlatım 



Sagot :

Rasyonel sayılar, (oranlı sayılar) iki tamsayının birbirine oranı ile ifade edilebilen sayıların oluşturduğu kümedir. Rasyonel sayılar tam sayıların bir genişlemesidir ve  ile gösterilir. kümesi genelde şöyle tanımlanır:


(a ve b tam sayı ve sıfır olmamak üzere a/b şeklindeki sayılara rasyonel sayı denir)

 ve  veya  eşdeğer rasyonel sayılardır. Dolayısıyla her rasyonel sayı sonsuz şekilde ifade edilebilir. Rasyonel sayıların en basit biçimi  ve  tamsayılarının ortak böleninin olmadığı  ifadesidir.

Her tam sayı rasyonel sayıdır. Çünkü  veya  veya  şeklinde yani Rasyonel sayı tanımına uygun biçimde yazılabilirler. Rasyonel sayılar kümesi , tam sayılar kümesi 'yi kapsar. Yani .

Daha ince bir tanımı ise tam sayılar üzerinden tanımlanacak bir denklik bağıntısıyla yapılabilir. Böylece her denklik sınıfı bir rasyonel sayı olarak anılır.  kümesinden seçilmiş keyfî(a,b) ve (c,d) öğeleri için "~" bağıntısı  olarak tanımlansın. Bunun bir denklik bağıntısı olduğu kolaylıkla kanıtlanabilir. Bu durumda, denklik sınıfları  olurlar. Rasyonel sayı ise basitçe  şeklinde tanımlanır. Tanımda paydanın sıfır olmama şartı  ifadesinin tanımlanmamış olmasındandır. Bir sayının sıfıra bölümü tanımsızdır.

Sıfırdan büyük olan rasyonel sayılara pozitif rasyonel sayılar, sıfırdan küçük rasyonel sayılar da negatif rasyonel sayılar denir. Pozitif rasyonel sayılar kümesi ile, negatif rasyonel sayılar kümesi ile gösterilir.

Örneğin Dörde bölünüp, dörtte biri kesilip alınmış ve geri kalan dörtte üçü gösterilen bir yuvarlak pasta

Yandaki şekilde, bir yuvarlak pasta 4 eş parçaya bölünmüş ve bu 4 eş parçalardan her birisi  olarak görülmektedir. Ancak bir parça alınmış olduğundan kalan eksikdir. Geriye kalan, dört eşit parçaya bölünmüş bütünün üç tane parçası (yani 3'te 4 oranı) veya (kesiri)dir. Bu  ifadesi şeklinde gösterilir. Burada ifadede kesir çizgisinin üstündeki değere (yani 3'e) pay, kesir çizgisinin altındaki değere (yani 4’e) payda denir. Bu kesir, “üç bölü dört” ya da “dörtte üç” diye okunur.

hmmkes

Rasyonel sayılar, (oranlı sayılar) iki tamsayının birbirine oranı ile ifade edilebilen sayıların oluşturduğu kümedir. Rasyonel sayılar tam sayıların bir genişlemesidir ve  ile gösterilir. kümesi genelde şöyle tanımlanır:


(a ve b tam sayı ve sıfır olmamak üzere a/b şeklindeki sayılara rasyonel sayı denir)

 ve  veya  eşdeğer rasyonel sayılardır. Dolayısıyla her rasyonel sayı sonsuz şekilde ifade edilebilir. Rasyonel sayıların en basit biçimi  ve  tamsayılarının ortak böleninin olmadığı  ifadesidir.

Her tam sayı rasyonel sayıdır. Çünkü  veya  veya  şeklinde yani Rasyonel sayı tanımına uygun biçimde yazılabilirler. Rasyonel sayılar kümesi , tam sayılar kümesi 'yi kapsar. Yani .

Daha ince bir tanımı ise tam sayılar üzerinden tanımlanacak bir denklik bağıntısıyla yapılabilir. Böylece her denklik sınıfı bir rasyonel sayı olarak anılır.  kümesinden seçilmiş keyfî(a,b) ve (c,d) öğeleri için "~" bağıntısı  olarak tanımlansın. Bunun bir denklik bağıntısı olduğu kolaylıkla kanıtlanabilir. Bu durumda, denklik sınıfları  olurlar. Rasyonel sayı ise basitçe  şeklinde tanımlanır. Tanımda paydanın sıfır olmama şartı  ifadesinin tanımlanmamış olmasındandır. Bir sayının sıfıra bölümü tanımsızdır.

Sıfırdan büyük olan rasyonel sayılara pozitif rasyonel sayılar, sıfırdan küçük rasyonel sayılar da negatif rasyonel sayılar denir. Pozitif rasyonel sayılar kümesi ile, negatif rasyonel sayılar kümesi ile gösterilir.

Örneğin Dörde bölünüp, dörtte biri kesilip alınmış ve geri kalan dörtte üçü gösterilen bir yuvarlak pasta

Yandaki şekilde, bir yuvarlak pasta 4 eş parçaya bölünmüş ve bu 4 eş parçalardan her birisi  olarak görülmektedir. Ancak bir parça alınmış olduğundan kalan eksikdir. Geriye kalan, dört eşit parçaya bölünmüş bütünün üç tane parçası (yani 3'te 4 oranı) veya (kesiri)dir. Bu  ifadesi şeklinde gösterilir. Burada ifadede kesir çizgisinin üstündeki değere (yani 3'e) pay, kesir çizgisinin altındaki değere (yani 4’e) payda denir. Bu kesir, “üç bölü dört” ya da “dörtte üç” diye okunur.