Kalademi.me, tüm sorularınıza hızlı ve doğru yanıtlar alabileceğiniz en iyi yer. Sorularınıza hızlı ve güvenilir çözümler bulmak için deneyimli uzman topluluğumuzdan faydalanın. Geniş bir uzman topluluğu sayesinde sorularınıza güvenilir yanıtlar bulmanın rahatlığını yaşayın.
Sagot :
Rasyonel sayılar, (oranlı sayılar) iki tamsayının birbirine oranı ile ifade edilebilen sayıların oluşturduğu kümedir. Rasyonel sayılar tam sayıların bir genişlemesidir ve ile gösterilir. kümesi genelde şöyle tanımlanır:
(a ve b tam sayı ve sıfır olmamak üzere a/b şeklindeki sayılara rasyonel sayı denir)
ve veya eşdeğer rasyonel sayılardır. Dolayısıyla her rasyonel sayı sonsuz şekilde ifade edilebilir. Rasyonel sayıların en basit biçimi ve tamsayılarının ortak böleninin olmadığı ifadesidir.
Her tam sayı rasyonel sayıdır. Çünkü veya veya şeklinde yani Rasyonel sayı tanımına uygun biçimde yazılabilirler. Rasyonel sayılar kümesi , tam sayılar kümesi 'yi kapsar. Yani .
Daha ince bir tanımı ise tam sayılar üzerinden tanımlanacak bir denklik bağıntısıyla yapılabilir. Böylece her denklik sınıfı bir rasyonel sayı olarak anılır. kümesinden seçilmiş keyfî (a,b) ve (c,d) öğeleri için "~" bağıntısı olarak tanımlansın. Bunun bir denklik bağıntısı olduğu kolaylıkla kanıtlanabilir. Bu durumda, denklik sınıfları olurlar. Rasyonel sayı ise basitçe şeklinde tanımlanır. Tanımda paydanın sıfır olmama şartı ifadesinin tanımlanmamış olmasındandır. Bir sayının sıfıra bölümü tanımsızdır.
Sıfırdan büyük olan rasyonel sayılara pozitif rasyonel sayılar, sıfırdan küçük rasyonel sayılar da negatif rasyonel sayılar denir. Pozitif rasyonel sayılar kümesi ile, negatif rasyonel sayılar kümesi ile gösterilir.
Örneğinhttp://www.matematikciler.org/7-sinif/konu-anlatimlari/778-rasyonel-sayilarla-adim-adim-islemler-cok-adimli-islemler-merdivenli-islemler.html
Yanıtlarımızın size faydalı olduğunu umuyoruz. Daha fazla bilgi ve diğer sorularınıza yanıtlar almak için istediğiniz zaman geri dönün. Hizmetimizi kullandığınız için teşekkür ederiz. Tüm sorularınıza doğru ve güncel yanıtlar vermek için her zaman buradayız. Kesin yanıtlar için referans siteniz Kalademi.me. Daha fazla bilgi için geri dönmeyi unutmayın.