Kalademi.me, tüm sorularınıza aktif topluluğumuzun yardımıyla çözümler bulmayı kolaylaştırır. Farklı alanlardaki profesyonellerden ayrıntılı yanıtlar almak için platformumuzu keşfedin. Sorularınıza hızlı ve güvenilir çözümler bulmak için deneyimli uzman topluluğumuzdan faydalanın.

cebirsel ifadelerin sorun ve çözümleri

 



Sagot :

Belli bir kurala göre verilen sayı örüntülerini harfler kullanarak denkleme dökme şekline cebirsel ifadeler denir. Diğer bir tanımla 2x gibi en az bir bilinmeyen ve işlem içeren ifadelere cebirsel ifadeler denir.
3a+5b gibi cebirsel ifadelerde toplama veya çıkarma sembolleriyle ayrılan 3a ve 5b'ye terim denir.Terimlerin sayısal çarpanı olan 3 ve 5'e ise katsayı denir.
Ali’nin yaşının 2 fazlası demek x+2 olarak yazılır.
Bu tür denklemleri çözerken amaç bilinmeyeni yani harfleri yalnız bırakıp harflerin sayı karşılığını bulmaktır.
Cebirsel ifadelerde kullanılan harfler sayıları temsil eder ve bilinmeyen veya değişken olarak isimlendirilir.
Değişken yerine bir sayı yazarak cebirsel ifadenin o sayı için değerini buluruz.
Değişkeni ve bu değişkenin kuvvetleri eşit olan cebirsel ifadeler benzer terimlerdir.
Cebirsel ifadeler toplanırken benzer terimlerin kat sayıları toplanır. 9x-6x gibi cebirsel ifadede harfleri aynı olan terimlere benzer terimler denir.Burada 9x ile 6x benzer terimdir.Benzer terim olunca işlem yapılır. 9x-6x=3x olur.
Cebirsel ifadeler, sayısal ifadelerin başka bir gösterimi olduğundan çarpma işleminin toplama ve çıkarma işlemi üzerine dağılma özelliği uygulanır.www.matematikcifatih.tr.gg 
Eşit işareti (=) ve bilinmeyen içeren sayı cümlesine denklem denir. Denklemi doğru yapan değişkenin değerine o denklemin çözümü denir.
Farklı şekillerin biraraya gelmesi sonucu oluşan yeni şekillere örüntü denir.Örüntüye halı desenlerini, sınıflardaki fayansların dizilişlerini,belli bir şekilde artarak devam eden sayı dizilerini örnek verebiliriz.İşte bunlar belli bir sayısal kurala göre dizilirler.Örneğin; 2,4,6,8,...veya 3,6,9,12,... veya 5,10,15,20,25,.... gibi okumadan yapıştırdım nidersen et

Se7en


CEBİRSEL İFADELERLE İLGİLİ ÖRNEK SORULAR VE ÇÖZÜMLERİ

1) Veli'nin yaşının 3 katının 5 fazlası Ayşe'nin yaşına eşittir. Ayşe 17 yaşında olduğuna göre Veli kaç yaşındadır?
Çözüm:
Veli=x
3x+5=17      
3x=17-5     
3x=12
3x/3=12/3
x=4

2) (-3x+5) ile (x-7) cebirsel ifadelerinin toplamını bulalım.
Çözüm:
(-3x+5) + (x-7)  = -3x+5+x-7
                        = (-3x+x)+(5-7)
                        = (-3+1)x + (-2)
                        = -2.x -2
                        = -2x-2

3) 6a - 7b + 9 - 2a cebirsel ifadesi veriliyor.Bu ifadede;
a) Kaç tane terim vardır?
b) Sabit terim hangisidir?
c) 2 ve 4. terimlerin katsayılarını ve bilinmeyenlerini yazınız.
d) Benzer terimler varsa hangileridir?
Çözüm:
a) 4 tane terim vardır.
b) Sabit terim 9'dur.
c) 2. ve 4. terimlerin katsayıları -7, -2
2. ve 4. terimlerin bilinmeyenleri b, a
d) 6a ile -2a benzer terimlerdir.

4) -(x-9)+2(4-3x)+8x cebirsel ifadesinin en sade eş değerini yazalım.
Çözüm:
-(x-9)+2(4-3x)+8x   = -x+9+2(4-3x)+8x
                             = -x+9+8-6x+8x
                             = -x-6x+8x+9+8
                             = -7x+8x+17
                             = +x+17
                             = x+17

5) -(-x-5)+(-3x+3)-(5-2x)-3(-5x-1) cebirsel ifadesinin en sade eş değerini yazalım.
Çözüm:
Önce parantezin önündeki işaret ve sayıları parantezin içindeki her sayıyla ayrı ayrı dağıtarak çarpalım.İşaretlere dikkat !!! 

= +x+5-3x+3-5+2x+15x+3
= +x-3x+2x+15x+5+3-5+3
= +15x+6
= 15x+6

6) Bir kenarının uzunluğu x2 olan karenin alanını ve çevresini bulalım.
Çözüm:
Karenin alanı demek bir kenarını kendisiyle çarparız.

A=x2.x2
A=x4

Karenin çevresi demek bütün kenarlarını toplarız.

Ç=x2+x2+x2+x2
Ç=4.x2

7) Bir kenarının uzunluğu 3x olan karenin alanını ve çevresini bulalım.
Çözüm:
Karenin alanı demek bir kenarını kendisiyle çarparız.

A=3x.3x
A=9x2

Karenin çevresi demek bütün kenarlarını toplarız.

Ç=3x+3x+3x+3x
Ç=12x

8) Bir kenarının uzunluğu x+5 olan karenin alanını ve çevresini bulalım.
Çözüm:
Karenin alanı demek bir kenarını kendisiyle çarparız.

A=(x+5).(x+5)
A=x2+10x+25

Karenin çevresi demek bütün kenarlarını toplarız.

Ç==(x+5)+(x+5)+(x+5)+(x+5)
Ç=4x+20

9) Kısa kenarı x, uzun kenarı x2 olan dikdörtgenin alanını ve çevresini bulalım.
Çözüm:
Dikdörtgenin alanı demek kısa kenarı ile uzun kenarını çarparız.
A=x.x2
A=x3

Dikdörtgenin çevresi demek bütün kenarlarını toplarız.

Ç==x+x2+x+x2
Ç=2x2+2x

10) Kısa kenarı 3, uzun kenarı 2x2 olan dikdörtgenin alanını ve çevresini bulalım.
Çözüm:
Dikdörtgenin alanı demek kısa kenarı ile uzun kenarını çarparız.
A=3.2x2
A=6x2