Kalademi.me, tüm sorularınıza hızlı ve doğru yanıtlar alabileceğiniz en iyi yer. Farklı alanlardaki profesyonellerden ayrıntılı yanıtlar almak için kullanıcı dostu platformumuzu keşfedin. Farklı disiplinlerdeki uzmanlardan kesin yanıtlar almak için kapsamlı soru-cevap platformumuzu kullanın.
Sagot :
Fonksiyon (Fransızca), İşlev (Türkçe) matematikte değişken sayıları girdi olarak kabul edip bunlardan bir çıktı sayısı oluşmasını sağlayan kurallardır. Bir işlem türüdür. Dört işlemden sonra gelir.
FONKSİYONLAR
A ve B boş olmayan iki küme olsun. A’nın her elemanını B’nin yalnız bir elemanına eşleyen A’dan B’ye bir f bağıntısına, A’dan B’ye bir fonksiyon denir.
Fonksiyon olması için;
1) A’nın her elamanı B’ye gidecek.
2) A kümesinde açıkta eleman kalmayacak.
3) A’nın herhangi bir elamanı B’ye iki defa gitmeyecek.
4) B’de açıkta elaman kalabilir.
Örnek: A={ali,ayşe,fatma} B={sarma,makarna,pilav,yahni}
A’dan B’ye tanımlanan bağıntılardan hangileri fonksiyondur?
a) f={(ali,sarma),(ayşe,makarna),(fatma,yahni)}
b) g={(ali,pilav),(ayşe,sarma),(fatma,yahni),(fatma,makarna)}
c) h={(ayşe,sarma),(fatma,pilav)}
Yukarıdakilerden h bağıntısı fonksiyon değildir çünkü ali açıkta kalmıştır.
g bağıntısı fonksiyon değildir çünkü fatma iki çeşit yemek almıştır.
f bağıntısı fonksiyondur.A’nın her elamanı B’den bir çeşit yemek seçmiştir.
Buradaki kişilerin kümesine fonksiyonun tanım kümesi,yemeklerin kümesine fonksiyonun değer kümesi,değer kümesinde bulunan kişilerin yediği yemeklerin kümesine de fonksiyonun görüntü kümesi denir.
f: A—->B biçiminde yada f: x—->y biçiminde gösterilir.
y=f(x) yazılır. xϵA, y=f(x)ϵB olur.
Fonksiyonun görüntü kümesi f(A) ile gösterilir.
Tanım kümesi: ali,ayşe,fatma
Değer kümesi: sarma,makarna,pilav,yahni
Görüntü kümesi: sarma,makarna,yahni
Örnek: A={a,b,c} B={1,2,3,4,5,6} ise
Fonksiyonun elemanlarının liste yöntemiyle gösterimi
f={(a,2),(b,4),(c,4)}
Fonksiyonun görüntü kümesi
f(A)={2,4}
Örnek: A={-1,0,2,4}, f: A—->B, f(x) = x2-2 veriliyor. f ve f(A) kümesini
bulalım.
Tanım kümesindeki elemanlara x deriz.
x=-1 için f(-1)=(-1)2-2=-1
x=0 için f(0)=(0)2-2=-2
x=2 için f(2)=(2)2-2=2
x=4 için f(4)=(4)2-2=14
f={(-1,-1),(0,-2),(2,2),(4,14)}
f(A)={-1,-2,2,14}
Örnek: f(x+1)=3+f(x) ve f(1)=4 ise f(3) kaçtır?
f(x+1)=3+f(x) eşitliğinde
x=1 yazalım.
f(2)=3+f(1)
f(2)=3+4=7
x=2 yazalım.
f(3)=3+f(2)
f(3)=3+7=10
Örnek: f: R—->R, f(x) = 3x+5 fonksiyonu veriliyor. f(2x+3) fonksiyonunun f(x) cinsinden eşiti nedir?
f(x) = 3x+5
f(2x+3) = 3(2x+3)+5
f(2x+3) = 6x+14
f(2x+3) = 2(3x+5)+4
f(2x+3) = 2f(x)+4
Örnek: f: R—->R, f(3x+2) = x2-x+2 olduğuna göre f(5)+f(2) toplamı
kaçtır?
f(3x+2) = x2-x+2 fonksiyonun içlerini sırasıyla 5 ve 2’ye eşitleyeceğiz.
3x+2=5 buradan x=1 olur.
x=1 için f(5)=1-1+2=2
3x+2=2 buradan x=0 olur.
x=0 için f(2)=0-0+2=2
f(5)+f(2)=2+2=4
Hizmetimizi kullandığınız için teşekkür ederiz. Tüm sorularınıza doğru ve güncel yanıtlar vermek için her zaman buradayız. Hizmetimizi kullandığınız için teşekkür ederiz. Tüm sorularınıza doğru ve güncel yanıtlar vermek için her zaman buradayız. Kalademi.me'yi kullandığınız için teşekkür ederiz. Uzmanlarımızdan daha fazla bilgi için geri dönün.