Freeman
Answered

Kalademi.me, tüm sorularınıza hızlı ve doğru yanıtlar alabileceğiniz en iyi yer. Farklı alanlardaki profesyonellerden kapsamlı çözümler bulmak için platformumuzu kullanın. Sorularınıza hemen güvenilir yanıtlar bulmak için deneyimli uzman topluluğumuzdan faydalanın.

Diskriminantla denklem çözme konusunda örneklere ihtiyacım var.



Sagot :

nÖRNEK: x2 – 4x + m + 1 = 0 denkleminin eşit iki kökünün olması için m kaç olmalıdır?

ÇÖZÜM: Denklemin eşit iki kökün olması için ∆ = 0 olmalıdır.
∆ = (-4)2 –4 .1. (m + 1)
0 = 16 –4m = 12 –4m
m = 3 bulunur.

nÖRNEK: (a + 1)x2 –2(a + 7)x + 27 = 0 a ≠ -1 olmak üzere
ndenklemin kökleri eşit olduğuna göre, a’ nın alabileceği değerler toplamı kaçtır? (1998 / ÖSYS)

ÇÖZÜM: (a + 1)x2 –2(a + 7)x + 27 = 0
denklemin kökleri eşit ise ∆ = 0 olmalıdır.
∆ = 4. (a + 7)2 –4 . 27 . (a + 1)
0 = a2 + 14a + 49 – 27a –27
a2 - 13a + 22 = 0
Bu denklemi sağlayan a değerlerinin toplamı
(-13)
a1 + a2 = - 1 = 13 olur.
a ≠ 0, ax2 + bx + c = 0 denkleminin;
i) Simetrik iki kökünün olması için b = 0 olmalıdır.
ii) Simetrik iki reel kökünün olması için,
b = 0 ve a .c > 0 olmalıdır.

ÖRNEK: ax2 – (a2 –4 )x + 4 = 0
denkleminin simetrik iki reel kökü olduğuna göre, a kaçtır?

ÇÖZÜM: ax2 – (a2 –4 )x + 4 = 0
Denkleminin simetrik iki reel kökünün olması için,
a2 –4 = 0 ve 4 .a > 0 olmalıdır.
a2 –4 = 0 => a = -2 ve a = 2 dir.
4.a < 0 => a < 0 olmalıdır. O halde a = -2 olur.

KÖKLER İLE KATSAYILAR ARASINDAKİ BAĞINTI
ax2 + bx + c = 0 ikinci derece denkleminin kökleri x1 ve x2 olsun.
-b
1)x1 + x2 = a
c2)x1 . x2 = a

3)|x1 - x2| = |a|

1 1 x1 + x2 -b
4)x1 + x2 = x1 . x2 = c
5)X12 + x22 = (x1 + x2 )2 –2x1x2
b2 – 2ac
a2

6)1 1 x12 + x22
x12 +x22 = x12 . X22
b2 –2ac
= c2
7)x13 + x23 = (x1 + x2)3 –3x .x2(x + x2)
3abc-b3
= a3

ÖRNEK: 2x2 –5x + p2 + q2 = 0 denkleminin kökleri p ve q olduğuna göre, diskriminantı kaçtır?

ÇÖZÜM: 2x2 –5x + p2 + q2 = 0 denkleminde
a = 2, b = -5, c = p2 + q2, x1=p, x2 =q
c p2 + q2
x1 . x2 = a => p .q= 2
2pq = p2 + q2 p2 –2pq + q2 = 0
(p – q)2 = 0 ise
p – q = 0
p = q dur.
O halde, kökler eşit olduğundan ∆=0 dır.


Kaynak: İkİncİ Dereceden Bİr Bİlİnmeyenlİ Denklem http://www.webhatti.com/matematik/49753-ikinci-dereceden-bir-bilinmeyenli-denklem.html#ixzz2EgQE4Usw
whkaynak