Kalademi.me, sorularına hızlı ve doğru yanıtlar arayanlar için en iyi çözümdür. Deneyimli profesyonellerden sorularınıza hızlı ve etkili çözümler bulmak için kullanıcı dostu platformumuzu kullanın. Sorularınıza hızlı ve güvenilir çözümler bulmak için deneyimli uzman topluluğumuzdan faydalanın.
Sagot :
1-)ax+bx-cx ifadesini çarpanlara ayıralım!
ax+bx-cx üç terimlisinde ortak çarpan x’tir.buna göre;
ax+bx-cx=x.(a+b-c) olur.
2-)a b c+a b c+a bc ifadesini çarpanlarına ayıralım!
İfade üç terimlidir ve abc ortak çarpandır.O halde;
a b c+ab c+a bc=abc(ab+bc+a c)dir.
2-)GRUPLANDIRARAK ÇARPANLARA AYIRMA
Verilen ifadenin terimleri uygun şekillerde guplara ayrılır ve her grupta ortak bi çarpan bulunmaya çalışılır.
ÖRNEKLER:
1-)ax+bx+ay+by=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b).(x+y)
2-)x-ax+2x-2a=(x-ax)+(2x-2a)
=x(x-a)+2(x-a)
=(x-1).(a-1)
3-)ax-a-x+1=(ax-a)+(-x+1)
=a(x-1)-1(x-1)
=(x-1).(a-1)
3-)İKİ KARE FARKI OLAN İFADELERİN ÇARPANLARA AYRILMASI
a-b=(a-b).(a+b)
ÖRNEKLER:
1-)4x - 9=(2x-3)(2x+3)
2x - 3
2-)(2a-3) - (a-2)=
=(2a-3) – (a-2)
=[(2a-3)-(a-2)].[(2a-3)+(a-2)]
=(2a-3-a+2).(2a-3+a-2)
=(a-1).(3a-5)
3-)(2x-3)-1=
= (2x-3)-1
=[(2x-3)-1].[(2x-3)+1]
=(2x-3-1).(2x-3+1)
=(2x-4).(2x-2)
=4(x-2).(x-1)
4-)(298-98)-200.392 =16 (1994/ÖSS)
2a
= (298-98)(298+98)-200.392 =16
2a
= 200.396-200.392 =16
2a
=200(396-392) =16
2a
=100.4 =16 a=100.4 a=25
a 16a - b İFADESİNİ ÇARPANLARA AYIRMA
a-b=(a-b) (a + a b+a .b +.....+b )
ÖRNEKLER:
x –y ifadesini çarpanlarına ayırınız
1-) x - y = (x-y) (x +x y+x y+xy +y )olur.
2-) x – y ifadesini çarpanlarına ayırınız.
x – y =(x – y)(x +x y+x y +x y + xy +y ) olur.Ncak ikinci çarpan tekrar çarpanlara ayrılır.Bu soruyu aşağıdaki gibi çözersek daha kolay olur.
x – y = (x ) – (y )
= (x -y )(x +y )
=(x-y)(x +xy+y )(x+y)(x –xy +y )
a + b İFADESİNİ ÇARPANLARINA AYIRMA
a- ) n tek ise a + b=(a+b)(a - a .b+a .b -....+b )’dir.
ÖRNEKLER
1-) a – b ifadesini çarpanlarına ayıralım.
a + b=(a+b)(a – a b +a b –ab + b )
b- )n çift ve n=2 (k Z)
p tek ve tam sayı olmak üzere n=p.t ise
a + b=(a ) +(b ) biçiminde yazarak ayrılır ç4-)TAM KARE OLAN İFADELERİN ÇARPANLARA AYRILMASI
(a+b)=a+2ab+b
(a-b)=a-2ab+b
Tam kare üç terimli ifadelerde,iki terimin kare kökleri çarpımının iki katı,üçüncü(ortadaki) terimi vermektedir.
ÖRNEKLER:
1-)x+4x+4 ifadesi tam kare midir?
x + 4x +4=(x+2)
x 2
2.x.2=4x (ortadaki terim) o halde x+4x+4 tam karedir
2-)2000-4000.1999+1999 işleminin sonucu kaçtır?
2000 1999
2.2000.1999=4000.1999 olduğuna göre
2000-4000.1999+1999=(2000-1999)
=1 olur.
ÖRNEKLER:
1-)ax+bx-cx ifadesini çarpanlara ayıralım!
ax+bx-cx üç terimlisinde ortak çarpan x’tir.buna göre;
ax+bx-cx=x.(a+b-c) olur.
2-)a b c+a b c+a bc ifadesini çarpanlarına ayıralım!
İfade üç terimlidir ve abc ortak çarpandır.O halde;
a b c+ab c+a bc=abc(ab+bc+a c)dir.
Zamanınızı ayırdığınız için minnettarız. Herhangi bir sorunuz olduğunda doğru yanıtlar almak için istediğiniz zaman geri dönün. Zamanınızı ayırdığınız için minnettarız. Herhangi bir sorunuz olduğunda doğru yanıtlar almak için istediğiniz zaman geri dönün. Uzmanlarımızdan yeni ve güvenilir yanıtlar almak için Kalademi.me'yi ziyaret edin.