Odkryj odpowiedzi na swoje pytania łatwo na Kalademi.me, zaufanej platformie Q&A. Deneyimli profesyonellerden sorularınıza hızlı ve etkili çözümler bulmak için kullanıcı dostu platformumuzu kullanın. Farklı alanlardaki profesyonellerden kapsamlı çözümler bulmak için platformumuzu kullanın.
Sagot :
alıntıdır................
x, y, z e R olmak üzere,
a) Eşitsizliklerin her iki tarafı aynı sayı ile toplanıp çıkarılabilir.
y Eşitsizliğin her iki tarafı aynı pozitif sayı ile çarpılıp veya bölünebilir.
d) Eşitsizliğin her iki tarafı negatif bir sayı ile çarpılıp bölündüğünde eşitsizlik yön değiştirir.
d) Yönleri aynı olan eşitsizlikler taraf tarafa toplanabilir.
e) Eşitsizliğin çözüm kümesi yazılırken, eşitlik varsa sayının kendisi dahil edilecek, eşitlik yoksa sayı dahil edilmeyecek.
MUTLAK DEĞER ÖZELLİKLLERİ VE İŞLEVLERİ
Tanım:Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile gösterilir.
x , R nin elemanıdır ve
x ={x, x > 0 ise
{-x,x < 0 ise
şeklinde tanımlanır.
f(x) ={f(x),f(x) > 0 ise
{-f(x),f(x)< 0 ise
1) Örnek: x =-3 için x-5 - x+2 ifadesinin eşiti kaçtır?
Çözüm: -3-5 - -3+2 = 8-1=7
2) Örnek: a<b<0 olduğuna göre,
a+b - a-b ifadesinin eşiti nedir?
Çözüm: a+b - a-b = -(a+b)- -(a-b)
=-a-b+a-b
=-2b
ÖZELLİKLERİ
V a,b elemandır R için
1) a > 0 dır
2) a = -a
3) - a < a < a
4) a.b = a . b
5) b= 0 için a/b = a / b
6) a+b < a + b (üçgen eşitsizliği)
7) n elemanıdır Z* olmak üzere a^ = a ^
8) a > 0,x elemanıdır R ve x < a ise -a <x <a
9) a > 0,x elemanıdır R, x > a ise x > a veya x < -a dır.
10) IaI-IbI < Ia+bI
11)I-aI=IaI, Ia-bI=Ib-aI
12)IaI . IaI = a . a
13)I f(x) I = a ise f(x )= a veya f(x) = -a
14)I f(x) I < a ise -a< f(x) < a
15)I f(x) I > a ise f(x) > a U -f(x) > a
İSPATLAR
Öz.1)a = 0 ise IaI = I0I = 0
a > 0 ise IaI = a >0
a < 0 ise IaI = -a >0 dır.
O halde IaI > 0 dır.
Öz.2)a ve -a sayılarının 0 dan uzaklıkları eşit olduğundan IaI=I-aI dır.
Öz.6)V a elemanıdır R için -IaI < a < IaI
V b elemanıdır R için -IbI < b< IbI
+
-IaI-IbI< a+b<IaI+IbI
O halde Ia+bI < IaI+IbI dir.
Öz.7)V a,b elemanıdır R için Ia.bI=IaI.IbI idi.
Ia^I=Ia.a.a...aI=IaI.IaI.IaI...IaI=IaI^ dir.
(n tane) ( n tane )
Öz.3)a sayısı için a<0,a=0,a>0 durumlarından biri vardır.
a)a < 0 ise IaI = -a dır.
IaI > 0 olduğundan -IaI < 0 dır.
-IaI= a <0 < IaI ise -IaI < a < IaI dır.
b)a=0 ise IaI = I0I = 0 ve -Ia I= 0 olacağından –IaI < a < IaI dır.
c)a > 0 ise IaI = a ve -IaI < 0 dır.
-IaI< 0 < IaI = a ise -IaI < a < IaI dır.
MUTLAK DEĞERLİ DENKLEMLER
Soru: I3x-7I = 5 denklemini çözünüz.
Çözüm:I3x-7I = 5 ise; 3x-7 = 5 veya 3x-7 = -5 olur.
1- 3x-7 = 5 2- 3x-7=-5
3x = 12 3x = 2
x = 4 x = 2/3
Ç={4,2/3}
Soru:Ix-7I = 7-x eşitliğini sağlayan kaç tane doğal sayı vardır?
Çözüm: Ix-7I = 7-x ise
x-7 < 0 ise x < 7olup x doğal sayıları 0,1,2,3,4,5,6,7 dir.
O halde 8 tane doğal sayı vardır.
Soru: 5-2x = 2 denkleminin çözüm kümesi nedir ?
BİRİNCİ DERECEDEN MUTLAK DEĞERLİ EŞİTSİZLİKLER
Soru: Ix-7I < 3 eşitsizliğinin çözüm kümesini bulunuz.
Çözüm: Ix-7I < 3 = -3 < x-7 < 3 = -3+7 < x < 3+7
=4<x<10 Ç={5,6,7,8,9}
Soru: 2x-3 < 2 eşitsizliğini sağlayan tamsayıları bulunuz.
Çözüm: 2x-3 < 2 = -2 <2x-3 < 2
= -4 < 2x-3 < 4
= -4+3 < 2x < 4+3
= -1< 2x < 7
= -1/2 < x < 7/2
Ç={0,1,2,3}
Soru:I 3x+2 I+9 > 2 eşitsizliğini çözünüz.
Çözüm:I 3x+2I+9 > 2 = I 3x+2I > -7
***Bu eşitsizlik x in her değeri için sağlanır.Bu nedenle; Çözüm kümesi R dir.
Soru: I Ix-5I-2 I < 3 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm:I Ix-5I-2 I < 3 = -3 < Ix-5I -2 < 3
= -1 < Ix-5I < 5
Ix-5I >-1 eşitsizliği daima doğrudur.
Ix-5I < 5 = -5 < x-5 < 5
= 0 < x < 10
Bu aradaki tamsayılar 1,2,3,4,5,6,7,8,9 olup 9 tamsayı vardır.
İKİNCİ DERECEDEN MUTLAK DEĞERLİ EŞİTSİZLİKLER
Soru: I 2x-7 I < 2 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm:I 2x-7 I < 2 = -2 < 2x-7 < 2
= -2+7 < 2x < 2+7
= 5 < 2x < 9
= 5/2 < x < 9/2
Bu durumda çözüm kümesi {3,4} olur.
Soru: I 3x+1 I > -8 denkleminin çözüm kümesini bulunuz.
Çözüm:V x elemanıdır R için I 3x+1 I > 0 olduğundan
I 3x+1 I > -8 eşitsizliği daima doğrudur. Buna göre denklemin çözüm kümesi Reel sayılar kümesidir.
Soru: I 3-3x I < 9 eşitsizliğinin R deki çözüm kümesi nedir?
a) 0<x<2 b) -2<x<4 c) -1<x<0 d) 0<x<2 e) 2<x<4
Çözüm: I 3-3x I<9 = -9 < 3-3x < 9
-9+3 < 3x < 9+3
= -6 < 3x < 12
= -6/3 < x < 12/3
= -2 < x < 4 ( Cevap B dir.)
MUTLAK DEĞER İLE İLGİLİ KARIŞIK ALIŞTIRMALAR
Soru 1: I 3x-1 I+5 = 0 denkleminin çözüm kümesi nedir?
Çözüm: I 3x-1 I+5 = 0 ise I 3x-1 I = -5 olur.
*** V a elemanıdır R için IaI > 0 dır.
Bu nedenle sorunun çözüm kümesi O dir.
Soru 2: I Ix-4I -5 I = 10 denklemini sağlayan x değerlerini bulunuz.
Çözüm: I Ix-4I –5 I = 10
Ix-4I-5 =10 veya Ix-4I-5 = -10
Ix-4I = 5 veya Ix-4I = -5
Ç = {O}
x-4 = 15 veya x-4 = -15 x = 19 veya x = -14
Soru 3: I Ix-1I+5 I = 8 denkleminin kökleri toplamı kaçtır?
Yanıtlarımızın faydalı olduğunu umuyoruz. Daha fazla bilgi ve diğer sorularınıza yanıtlar almak için istediğiniz zaman geri dönün. Buraya uğradığınız için teşekkür ederiz. Tüm sorularınıza en iyi yanıtları vermek için buradayız. Bir dahaki sefere görüşmek üzere. Kesin yanıtlar için referans siteniz Kalademi.me. Daha fazla bilgi için geri dönmeyi unutmayın.