Kalademi.me'da sorularınıza cevaplar bulun, tüm ihtiyaçlarınız için en güvenilir ve etkili Q&A platformu. Sorularınıza hızlı ve güvenilir çözümler bulmak için uzman topluluğumuzla bağlantı kurun. Sorularınıza hemen güvenilir yanıtlar bulmak için deneyimli uzman topluluğumuzdan faydalanın.

kümelerde kesşim birleşim ve fark ile ilgili sorular ve cevapları

 



Sagot :

Kümelerde Birleşim İşlemi ve Özellikleri

Sembol

birleşim işlemi, “ U ”

Örnek: A = {a, b, c} ve B = {1, 2, 3, 4} kümelerinin tüm elemanlarını bir araya getirerek yazalım:

Çözüm: {a, b, c, 1, 2, 3, 4} olur. Bu küme A ve B kümelerinin birleşim kümesidir

Kümelerde her eleman yalnız bir kez yazılır. İki kümenin birleşimi bu iki kümenin tüm elemanlarından oluşur. Birleşim işlemi “∪” sembolüyle gösterilir. A ve B gibi iki kümenin birleşimi sembolle “A ∪ B” biçiminde gösterilir,“A birleşim B” diye okunur.

Örnek: Aşağıdaki Venn şemasına göre A, B ve A∪ B kümelerini yazalım. Ayrıca eleman sayılarını bulalım.

 

Çözüm: A = {1, 2, 3, 4, 5}  s(A) = 5

B = {1, 2}  s(B) = 2

A ∪ B = {1, 2, 3, 4, 5}  s(A) = 5

 

Örnek: A = {a, b, c} ve B = {4, 5, 6} kümelerinin eleman sayıları arasındaki ilişkiyi inceleyelim


Çözüm: s(A) = 3 ve s(B) = 3’tür.


Eleman sayıları aynı olan kümeler, birbirine denktir.

 

Ayrık küme: Ortak elemanı olmayan kümelere ayrık küme denir.

 

Örnek: C = {z, t} ve D = {3, t, z} kümeleri veriliyor. C ∪D ve D∪C kümelerini bulup karşılaştıralım.

Çözüm: C ve D’nin ortak elemanları vardır. Bu elemanlar birleşim kümesine yalnız bir kez yazılmalıdır. O hâlde;

 

C ∪ D = {z, t} ∪ {3, t, z} = {z, t, 3} olur.

D ∪ C = {3, t, z} ∪ {z, t} = {3, t, z} olur.

Buradan, C ∪ D = D ∪ C olduğu görülür.


Örnek: Aşağıdaki şemayı ve birleşim işlemini inceleyelim:

 

Çözüm: B ∪ (C ∪ D)= {2, 3, 4} ∪ ({1, 2, 5} ∪ {5, 6})

= {2, 3, 4} ∪ {1, 2, 5, 6}

= {2, 3, 4, 1, 5, 6} olur.

(B ∪ C) ∪ D= ({2, 3, 4} ∪ {1, 2, 5}) ∪ {5, 6}

= {1, 2, 3, 4, 5} ∪ {5, 6}

= {1, 2, 3, 4, 5, 6} olur. Buradan,

B ∪ (C ∪ D)= (B ∪ C) ∪ D olduğu görülür.

 

Kümelerde birleşim işleminin birleşme özelliği vardır.

 birleşim toplamı

kesişim ortak norktası